

SAT CHEMISTRY

Technique

Vocabulary

• Electrons configuration (electronic structure)

I=0 I=1 I=2 I=3

THE

What ground state electrons configuration of neon atom?

A. 1s²2s²2p⁶3s²
B. 1s²2s²2p⁶3s¹3p¹
C. 1s²2s²2p⁶
D. 1s²2s²2p⁶3s²3p³
E. 1s²2s²2p⁶3s²3p⁶

What ground state electrons configuration of sodium ion?

A. 1s²2s²2p⁶3s²
B. 1s²2s²2p⁶3s¹3p¹
C. 1s²2s²2p⁶
D. 1s²2s²2p⁶3s¹
E. 1s²2s²2p⁶3s²3p⁶

Example 1&2

Example 1

What ground state electrons configuration of neon atom?

- A. $1s^22s^22p^53s^1$
- B. 1s²2s²2p⁶3s¹3p¹
- C. $1s^22s^22p^6$
- D. 1s²2s²2p⁶3s¹

E. $1s^22s^22p^63s^23p^6$

Example 2

What ground state electrons configuration of sodium ion? A. 1s²2s²2p⁵3s¹ B. 1s²2s²2p⁶3s¹3p¹ C. 1s²2s²2p⁶

D.
$$1s^22s^22p^63s^1$$

E. $1s^22s^22p^63s^23p^6$

What excited state electrons configuration of Sodium ion?

A. 1s²2s²2p⁵3s¹
B. 1s²2s²2p⁶3s¹3p¹
C. 1s²2s²2p⁶
D. 1s²2s²2p⁶3s²3p³
E. 1s²2s²2p⁶3s²3p⁶

• Significant figure and Decimal

Number	Significant figure	Decimal
0.236		
2.01	PIL	
3.20		
20.00		

THE

ARS

Example 3

The following data were collected to determine the density of a liquid.

Mass of bottle filled with liquid 21.245 g Mass of empty bottle 10.234 g Volume of liquid in bottle 11.0 mL The density of the liquid is best recorded as

> A. 0.1 g/mL B. 1 g/mL C. 1.0 g/mL D. 1.00 g/mL E. 1.001 g/mL

Example 4

The following data were collected to determine the density of insoluble compound X. liquid.

Mass of beaker and compound X24.285 gMass of empty beaker16.492 gThe volume of compound X1.47 mL

The density of the compound X is best recorded as

A. 2.176 g/mL
B. 3.745 g/mL
C. 5.34 g/mL
D. 5.340 g/mL
E. 0.12 g/mL